災害防救科技與知識專欄 —

## 建構臺灣地震帶數值模型資料庫

楊清淵1、柯明淳1、陳文山2、洪嘉佳2、柯孝勳1

1國家災害防救科技中心 地震與人為災害組

2國立臺灣大學地質科學系

### 摘要

本研究結合臺灣之地震重定位序列、震源機制解與地下速度構造 等地球物理資料,分析臺灣全島與鄰近海域的地震分布,完成20個 具有高地震發生潛勢的地震帶劃分工作,並建置地震帶數值模型資料 庫。地震帶數值模型資料庫除了提供地震帶的空間尺度、好發地震類 型與歷史地震資料外,模型資料也可以搭配地震震源分布進行活動區 塊的分析與展示,協助地震緊急應變工作。

一、 前言

臺灣位於歐亞板塊與菲律賓海板塊的交界,每年發生的大量地震 記錄著兩個板塊的快速聚合(Suppe, 1984; Teng, 1990; Yu et al., 1997)。 得益於地質調查、鑽井與地震觀測技術的精進與累積,引致地震發生

的活動構造,如中央地質調查所公告的 36 係活動斷層(林啟文等, 2021)、學研調查的活動斷層(陳文山,2016)與孕震構造(Shyu et al.,2020)等構造資料都逐步被調查完成。然而除了上述的活動構造 外,仍然有許多地震分布於無法以上述的活動構造解釋的區域。這些 發生於活動構造之外的構造空白帶地震,其地震規模、歷史地震事件 與地震分布範圍等資料都相對缺失,無法有效進行地震風險評估。有 鑑於此,國家災害防救科技中心自 2020 年起與臺灣大學地質科學系 合作,嘗試透過地震重定位、震源機制解與地下速度構造等地球物理 資料解析臺灣全島的地震分布狀況,劃分具有地震發生高潛勢的區域, 以「地震帶」命名之,並建構三維數值模型。地震帶資料除了提供地 震的分布範圍,該地震帶的好發地震類型、最大地震規模與所屬歷史 地震事件都被詳細描述。

## 二、 研究方法

本研究利用地下三維速度構造(Huang et al., 2014)搭配地震重定 位序列(Wu et al., 2008a)與震源機制解資料(Wu et al., 2008b)來進 行地震帶劃分(圖一)。地下三維速度構造包含 P 波波速(V<sub>P</sub>)、S 波 波速(V<sub>S</sub>)、兩者比值(V<sub>P</sub>/V<sub>S</sub>)與兩波速擾動值(Perturbation),地 下速度的變化可反映傳播介質基礎性質的差異,包括岩石之岩性、變

質度、是否含有流體、剛性體或半塑性等物理性質差異,恰好與應力 累積時岩石傾向於岩性差異之交界面或含有流體強度較低的界面破 裂的特性契合,因此選用速度構造資料當作劃分地震帶的研判依據。 地震資料則選用 1990 至 2019 等 30 年的地震序列進行地震重定位的 結果,並透過 P 波初動方向來解析地震震源機制解(柯明淳等,2021、 2022、2023)。



圖一、本研究採用之地球物理資料。(a)地震重定位序列;(b)震源機 制解;(c)地下三維速度構造(資料來源:(a)Wu et al., 2008a、(b)Wu et al., 2008b、(c) Huang et al., 2014)。

完成地下速度構造與地震資料的處理,本研究垂直主要活動構造 走向,由北至南共產製 29 個垂直速度構造剖面(圖二-a、b)。考量臺 灣南部位於馬尼拉隱沒帶之深緣地震,本研究以濁水溪為分界,以北 的垂直剖面共 15 條、深度 30 公里;以南的垂直剖面共 14 條,深度 100 公里(圖二-a、c)。除了垂直剖面外,本研究也嘗試自地表以每 五公里為區間,產製水平速度構造剖面,用以解析不同深度下單一地 震帶的範圍變化(圖二-b、c)。地震帶之判釋則透過垂直與水平剖面 交互比較進行劃分(圖三)。完成之地震帶判釋圖則匯入 GOCAD<sup>®</sup> Mining Suite 軟體中製作帶有向量資料的三維立體模型。



圖二、剖面位置與南北剖面深度差異。(a)臺灣北部 15 條剖面位置; (b)臺灣南部 14 條剖面位置;(c)北部與南部速度構造剖面。

國家災害防救科技中心災害防救電子報 第212期,2023/03發行





圖三、本研究速度構造剖面範例。(a)垂直速度構造剖面;(b)水平速度構造剖面。

# 三、 研究結果與模型建置

透過地下速度構造差異與地震分析,本研究於全臺共劃分出20個 地震帶(圖四)。本研究發現在過去三十年中(1990-2020),於中央地 質調查所已公告的36條活動斷層中,僅縱谷斷層(嶺頂、瑞穗、池 上、利吉斷層)與潮州斷層在斷層帶上有明顯地震聚集現象,其他斷 層則無明顯地震聚集,推測與斷層活動特性、間震期斷層成鎖定狀態 《 災害防救電子報 行政法人國家災害防救科技中心

相關,因此20個地震帶包括上述兩組活動斷層的縱谷斷層地震帶與 潮州斷層地震帶,其餘斷層帶則以鄰近地名或所屬地質構造分區命名。



圖四、全臺地震帶分布一覽。

# (一) 臺灣北部地震帶

本研究於濁水溪以北的臺灣北部共判釋出 14 個地震帶(圖四), 分別為位於西部麓山帶的泰安地震帶、草屯地震帶;位於雪山山脈的 李棟山地震帶、雪山地震帶、埔里地震帶;位於脊樑山脈的脊梁山脈 北段地震帶;位於脊樑山脈東翼的中央山脈斷層地震帶、東澳—南澳 地震帶、隱沒—碰撞轉換帶地震帶、縱谷斷層地震帶;位於蘭陽平原 的濁水斷層地震帶、羅東地震帶、龜山島火山地震帶與位於海岸山脈

面狀分布,除了在地下速度構造上有明顯的速度差異,地震沿著速度 差異處呈現面狀分布外,震源機制解顯示的主要破裂面也具有一致性, 因此其三維數值模型會被建構為面狀模型(圖五)。



圖五、北部地震帶範例。(a)北部五地震帶之側視圖,地震帶為面狀 分布;(b)地震帶俯視圖。

# (二)臺灣南部地震帶

濁水溪以南的臺灣南部共判識出9個地震帶(圖四),包含3個 由北部延續至南部的埔里、縱谷斷層與中央山脈斷層地震帶,以及位 於西部麓山帶的雲嘉南地震帶、阿里山地震帶與位於脊樑山脈的脊樑 山脈南段地震帶、潮州斷層地震帶、社口地震群、阿禮地震帶。臺灣

濁水溪以南之地震數量多、分布密集,本研究嘗試將 1990 至 2019 等 30 年的地震資料以發震時間進行區分 (1990-2000、2001-2010、2010-2019),結果顯示地震仍廣泛分布於地震帶的範圍內,無明顯面狀結 構,因此在數值模型的建構上本研究將單一地震帶在不同深度的分布 空間與以圈繪,並連結不同深度的地震範圍,建構團狀的地震帶模型 (圖六)。



圖六、南部地震帶範例。(a)南部二地震帶之側視圖,因地震呈團狀 分布於整個空間內,因此將地震帶以團狀模型表示;(b)地震帶俯視 圖。

## 四、 地震帶應用實例

現階段地震帶模型主要應用於歷史地震資料的統整與解釋,以及

8

國家災害防救科技中心災害防救電子報 第 212 期, 2023/03 發行

地震事件發震構造的協助研判。以 2011/06/26 (M<sub>L</sub> 5.0、14.8 km)、 2013/03/27 (M<sub>L</sub> 6.2、19.4 km)、2013/06/02 (M<sub>L</sub> 6.5、14.5 km)與 2018/08/18 (M<sub>L</sub> 5.1、19.2 km) 等多起南投地區的有感地震為例,目 前公告的活動斷層,無法解釋這些規模大於 5.0 的地震事件,但透過 地震帶模型的對比,這四起有感地震都屬於埔里地震帶的標準地震事 件(圖七),震源機制解符合埔里地震帶南—北、東南—西北走向, 向東傾斜 20-30 度。顯示南投地區主要的活動構造並未破裂至地表, 而是以 10 至 35 公里的地下破裂與錯動為主。



圖七、埔里地震帶與南投地區歷史地震。

於 2022 年 9 月在花東縱谷西翼、花蓮臺東交界所發生的一系列 逆衝與左移斷層地震,其中最大的兩起地震為 2022/09/17 的關山地震

 $(M_L 6.6 \times 8.6 \text{ km})$ 與 2022/09/18 的池上地震  $(M_L 6.8 \times 7.8 \text{ km})$ 。透 過震源位置與震源機制解的分析,這兩起主震並不屬於縱谷斷層 (池 上斷層),而是由位於脊樑山脈東翼、向西傾斜的中央山脈斷層地震 帶所引發的逆衝斷層地震事件 (圖八)。此地震帶除了在 P 波、S 波 比值  $(V_P/V_S)$  有明顯的差異外,透過歷史地震的分布,也顯示了此地 震帶地震深度向西逐漸變深,分布範圍約為地底 8 至 20 公里,下覆 於縱谷斷層之下。統計此地震帶規模大於 6.0 之地震事件,包括 2006 年臺東地震  $(M_L 6.2) \times 2013$ 年瑞穗地震  $(M_L 6.4) \times 2018$ 年花蓮地震  $(M_L 6.3) 與 2022 年光復 (M_L 6.0)、關山 <math>(M_L 6.6)$  及池上地震  $(M_L 6.8)$ ,顯示中央山脈斷層地震帶由北至南分布長度約 300 公里,並有 分段活動的現象。



圖八、中央山脈斷層地震帶與其歷史地震。

#### 五、 結論

透過地震重定位序列、震源機制解與地下速度構造等地球物理資料,本研究於全臺劃分出 20 個具有高地震潛勢的地震帶,並詳述各個地震帶的地震規模、活動特性、範圍大小與重大歷史地震事件。

目前地震帶主要協助提供構造空白區或未破裂至地表、但有大量 地震發生的區域構造解釋,如中央山脈斷層地震帶近20年來頻頻發 生規模6.0以上的地震事件,同時地震帶的數值模型也可以配合地震 的震源分布進行構造活動區塊的分析與展示,於地震應變工作提供協 助。本研究已完成劃分之20個地震帶,特別是臺灣南部的團狀地震 帶,是否能再更精細的分類其中的地震群,亦或未來地震帶模型是否 能更進一步提供區域地震的評估參數,如地震帶空間尺度或地震再現 周期,則仰賴進一步更細緻的地下速度構造模型與地震定位工作。

### 六、 致謝

本研究為國家科學與技術委員會防災學門科技部防災學門對於 大規模地震衝擊評估模型強化與應用面建構(計劃編號 MOST 109-2124-M-865-002、110-2124-M-865-002、111-2124-M-865-002)之提供, 於此感謝國家科學與技術委員會。感謝臺灣大學地質科學系吳逸民教 授提供地震資料。

11

## 七、 參考文獻

- 林啟文、劉彥求、周稟珊、林燕慧(2021)臺灣活動斷層調查的近期 發展。經濟部中央地質調查所彙刊,第三十四號,第1-40頁。
- 柯明淳、楊清淵、陳文山、楊耿明、葉恩肇、方星尹、洪嘉佳、吳佩 庭、柯孝勳(2021)臺灣北部地區地質地下向量化資料更新與維 護。國家災害防救科技中心報告,NCDR 109-A19,共60頁。
- 柯明淳、楊清淵、陳文山、楊耿明、吳逸民、葉恩肇、陳炳權、洪佳 嘉、吳佩庭、方星尹、柯孝勳(2022)建置地質地下數值資料庫 與其實例應用。國家災害防救科技中心報告,NCDR 110-T10,共 86頁。
- 柯明淳、楊清淵、陳文山、楊耿明、吳逸民、葉恩肇、洪嘉佳、方星 尹、吳品蓉、陳炳權、塗冠婷、黃明偉、柯孝勳(2023)地質數 值資料庫維護與地震應變應用。國家災害防救科技中心報告, NCDR 111-A18, 共 68 頁。
- 陳文山(2016)臺灣地質概論。中華民國地質學會,共204頁。
- Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., and Hsieh, H. H. (2014) Joint Vp and Vs tomography of Taiwan: implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177–191.
- Shyu, J. B. H., Chuang, Y. R., Chen, Y. L., Lee, Y. R., and Cheng, C. T. (2016) A New On-Land Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 27(3), 311-323.
- Shyu, J. B. H., Yin, Y. H., Chen, C. H., Chuang, Y. R., and Liu, S. C. (2020) Updates to the on-land seismogenic structure source database by the Taiwan Earthquake Model (TEM) project for seismic hazard analysis of Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 31, 469-478.
- Suppe, J. (1984) Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Mem. Geol. Soc. China, 6, 21–33.
- Teng, L.S. (1990) Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, *183*, 57–76.

- Wu, Y. M., Chang, C. H., Zhao, L., Teng, T. L., and Nakamura, M. (2008a) A Comprehensive Relocation of Earthquakes in Taiwan from 1991 to 2005. Bull. Seism. Soc. Am., 98, 1471–1481.
- Wu, Y. M., Zhao, L., Chang, C. H., and Hsu, Y. J. (2008b) Focal mechanism determination in Taiwan by genetic algorithm. Bull. Seism. Soc. Am., 98, 651–661.
- Yu, S. B., Chen, H. Y., and Kuo, L. C. (1997) Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1), 41-59.